
1

Rethinking the Formal Specification,
Validation, and Verification Process:
Making it an End-to-End Process that
is Scalable

Bret Michael
Professor of Computer Science and Electrical Engineering
Naval Postgraduate School
National Capital Region Campus, Arlington, Virginia
bmichael@nps.edu

June 20, 2013 SERE 2013

Distinguished Lecture

2

Disclaimer

The views and conclusions in this lecture
are those of the presenter and should
not be interpreted as necessarily
representing the official policies or
endorsements, either expressed or
implied, of the U.S. Government

June 20, 2013 SERE 2013

3

The Perilous Journey of
Software Development

client

ideas
Reqs

Spec

Design

Code

< 25% < 85%

Software errors introduced

June 20, 2013 SERE 2013

4

Validation and Verification (V&V)

client

ideas
Reqs

Spec

Design

Code

< 25% < 85%

Software errors introduced

Validation Verification

June 20, 2013 SERE 2013

5

Inadequacy of Manual V&V
Techniques

Relies on
 Manual examination of software requirements

and design artifacts

 Manual and tool-based analysis of design and
code

Ineffective for validating the correctness of
the developer’s cognitive understanding of
the requirements
 See Example 1

Inadequate for locating the subtle errors in
the complex time-constrained software
 See Example 2

June 20, 2013 SERE 2013

6

Software Automation

Holds the key to the validation and
verification of the behaviors of complex
software-intensive systems

Relies on formal specification of system
behaviors

 Specifications need to match the true
intent of the customer’s requirements

June 20, 2013 SERE 2013

Factors Contributing to
Specification Errors

Incorrect translation of the natural
language to formal assertion

Incorrect translation of the requirements,
as understood by the modeler, to natural
languages

Incorrect cognitive understanding of the
requirements

7 SERE 2013 June 20, 2013

Iterative Process

8 SERE 2013 June 20, 2013

The process for writing specification is iterative
because of human nature

 Humans usually write natural language
requirements with a specific scenario in mind

 They encounter ambiguities in the natural language
requirement

 Writing formal specifications can remove ambiguities

 Validate and generalize the requirements with a
plurality of scenarios

9

Ideal Attributes for V&V Process

Early start, continuous, and proactive

June 20, 2013 SERE 2013

Speci-

fication

Requirements

Process

Validation Process

Customer

Lower-

Level

Speci-

fication

Product

Validation Process

Verification ProcessVerification Process

Development Development

10

Ideal Attributes for V&V Process

Early start, continuous, and proactive

June 20, 2013 SERE 2013

Speci-

fication

Requirements

Process

Validation Process

Customer

Lower-

Level

Speci-

fication

Product

Validation Process

Verification ProcessVerification Process

Development Development

11

Formal V&V Techniques

There is no one-size-fits-all formal V&V
techniques

 Need to select the right tool for the right
job in the different phases of software
development

Need a framework to understand the
effectiveness of different formal
methods in different phases of the
software development process

June 20, 2013 SERE 2013

12

The Role of Specification –
 Have we built the right product?

Im
ple

m
en

ta
tio

n

S
p

e
c

if
ic

a
ti

o
n

 Verification

E.g.,

“if pump

pressure is

turned Low

then High and

then Low again

all within 10

milliseconds

then pump

should not be

High for at

least 20

additional

milliseconds”

Customer

cognitive

requirement

s

Spec. =

Formal

representation

10ms 20ms

x

June 20, 2013 SERE 2013

13

The Role of Verification –
 Have we built the product right?

Im
ple

m
en

ta
tio

n

S
p

e
c

if
ic

a
ti

o
n

 Verification

“if pump

pressure is

turned Low

then High and

then Low again

all within 10

milliseconds

then pump

should not be

High for at

least 20

additional

milliseconds”

Spec. =

Formal

representation

10ms 20ms

x

class PumpCtl {

 int x;

 void pumpOn() {

 …

 }

}

Verification =

The bridge between

specification and

implementation

June 20, 2013 SERE 2013

14

The Role of Validation -

Im
ple

m
en

ta
tio

n

S
p

e
c

if
ic

a
ti

o
n

 /

V

a
li
d

a
ti

o
n

 Verification

E.g.,

“if pump

pressure is

turned Low

then High and

then Low again

all within 10

milliseconds

then pump

should not be

High for at

least 20

additional

milliseconds”

Customer

cognitive

requirement

s
Spec. =

Formal

representation

10ms 20ms

x

Are we really
building the right
system?

June 20, 2013 SERE 2013

15

A Formal V&V Tradeoff Cuboid

Im
ple

m
en

ta
tio

n

S
p

e
c

if
ic

a
ti

o
n

 Verification

June 20, 2013 SERE 2013

16

The Specification/Validation
Dimension

Represents the cost/effort and
effectiveness/expressiveness associated
with the specification language of a
given formal method

Deals with the ease and ability of
writing formal specifications and getting
them right

 That is, getting them to represent the
cognitive intent the human owner has for
this requirement

June 20, 2013 SERE 2013

17

The Implementation Dimension

Deals with the ease of adapting a given
real-life complex program to a specific
FV&V technique.

The Verification Dimension

Represents the cost/effort, and
effectiveness/coverage of verification

June 20, 2013 SERE 2013

18

The Coverage Cube

Im
ple

m
en

ta
tio

n

C
ove

ra
ge

S
p

e
c

if
ic

a
ti

o
n

 C
o

v
e

ra
g

e

 Verification Coverage

How well does formal

specification match

the actual code?

Validation related: How well

are requirements covered?

To what extent can the

formal specification be

verified?

More is better.

June 20, 2013 SERE 2013

19

The Cost Cube

Less is better.

Im
ple

m
en

ta
tio

n

C
oat

S
p

e
c

if
ic

a
ti

o
n

 C
o

s
t

 Verification Cost

Cost of modeling:

how easy is it to

adapt the program in

order for verification

to take place

Cost of writing specifications:

how easy is it to write them

and to get them right?

Cost of verification

June 20, 2013 SERE 2013

20

Specification Coverage

Measures the ability to express
different classes of system behaviors
 Logical behavior
 Describes the cause and effect of a

computation, typically represented as
functional requirements of a system

 See Example 3

 Sequencing behavior
 Describes the behaviors that consist of

sequences of events, conditions and
constraints on data values, and timing

 See Example 4
Im

ple
m

en
ta

tio
n

C
ove

ra
ge

S
p

e
c

if
ic

a
ti

o
n

 C
o

v
e

ra
g

e

 Verification Coverage

June 20, 2013 SERE 2013

21

Specification Coverage (cont’d)

 Beyond Pure Sequencing

 Timing constraints - Describe the timely
start and/or termination of successful
computations at a specific point of time

 See Example 5

 Time-series constraints - Describe the
timely execution of a sequence of data values
within a specific duration of time

 See Example 6

Im
ple

m
en

ta
tio

n

C
ove

ra
ge

S
p

e
c

if
ic

a
ti

o
n

 C
o

v
e

ra
g

e

 Verification Coverage

June 20, 2013 SERE 2013

22

Specification Coverage (cont’d)

Positive and Negative Behaviors

 Positive behaviors – what you want the
system to do

 For example, “Whenever stop command is
received, the vehicle should reach complete
stop within 30 seconds ”

 Negative behaviors – What you do not
want the system to do

 For example, “Pump should never operate
until at least two seconds after valve-shut ”

Im
ple

m
en

ta
tio

n

C
ove

ra
ge

S
p

e
c

if
ic

a
ti

o
n

 C
o

v
e

ra
g

e

 Verification Coverage

June 20, 2013 SERE 2013

23

Specification Coverage (cont’d)

Positive and Negative Behaviors (cont’d)

 The key about negative behavior is not
the way it is phrased, it is about a
behavior that the system has to avoid

 Any behavior can be phrased as a positive or
negative statement

Negative statement:

Pump should never operate
until at least two seconds
after valve-shut

Positive statement:

Pump should remain
inactive until at least two
seconds after valve-shut

(a safety requirement) (a design decision)
June 20, 2013 SERE 2013

24

Implementation Coverage

Measures the extent a target system
can be verified by a formal method

 For example, the special programming
languages tailored specifically for the
Theorem Proving process does not cover
all aspects of the original C, C++
program, and hence has a low
implementation coverage

Im
ple

m
en

ta
tio

n

C
ove

ra
ge

S
p

e
c

if
ic

a
ti

o
n

 C
o

v
e

ra
g

e

 Verification Coverage

June 20, 2013 SERE 2013

25

Verification Coverage

Measures the thoroughness of verification by
a formal method

 For example, whenever a theorem
proving process does complete, it
provides 100% coverage and hence
has a high verification coverage

Im
ple

m
en

ta
tio

n

C
ove

ra
ge

S
p

e
c

if
ic

a
ti

o
n

 C
o

v
e

ra
g

e

 Verification Coverage

June 20, 2013 SERE 2013

26

Specification Cost

Measures the amount of effort
required to

 Express informal human expectations as
formal specifications

 Validate the resultant formal
specifications for correctness

 Maintaining the resultant formal
specifications as the system evolves

Im
ple

m
en

ta
tio

n

C
oat

S
p

e
c

if
ic

a
ti

o
n

 C
o

s
t

 Verification Cost

June 20, 2013 SERE 2013

27

Specification Cost (cont’d)

Assertion-oriented versus model-oriented
specifications
 Assertion-oriented specification

 High-level requirements are decomposed into more
precise requirements that are mapped one-to-one to
formal assertions

 Model-oriented specifications
 A single monolithic formal model (either as a state- or

an algebraic-based system) captures the combined
expected behavior described by the lower level
specifications of behavior

 Describes the expected behavior of a conceptualized
system from the analyst’s understanding of the
problem space

 June 20, 2013 SERE 2013

28

Advantages of Using an Assertion-
Oriented Specification Approach

Requirements are traceable because they are
represented, one-to-one, by assertions
(acting as watchdogs for the requirements)

 A monolithic model is the sum of all concerns: on
detecting a violation of the formal specification, it
is difficult to map that violation to a specific
human-driven requirement

Assertion-oriented specifications have a lower
maintenance cost than the model-oriented
counterpart when requirements change (i.e.,
ability to adjust the model)

June 20, 2013 SERE 2013

29

Continuation of Advantages

Assertions can be constructed to represent
illegal behaviors, whereas the monolithic
model typically only represents “good
behavior”

It is much easier to trace the expected and
actual behaviors of the target system to the
required behaviors in the requirements space

 Formal assertions can be used directly as input to
the verifiers in the verification dimension

June 20, 2013 SERE 2013

30

Continuation of Advantages

Conjunction of all the assertions becomes a
“single” formal model of a conceptualized
system from the requirement space

 Can be used to check for inconsistencies and other
gaps in the specifications with the help of
computer-aided tools

June 20, 2013 SERE 2013

31

Implementation Cost

Measures the amount of effort required
to instrument the target code for
verification

 For example, we must create an abstract
model from a C++ program before it can
be model-checked, and hence has a high
implementation cost

Im
ple

m
en

ta
tio

n

C
oat

S
p

e
c

if
ic

a
ti

o
n

 C
o

s
t

 Verification Cost

June 20, 2013 SERE 2013

32

Verification Cost

Measures the amount of effort required
to carry out the verification

 For example, model-checking is an
automatic, “push-button” process and has
a very low verification cost

Im
ple

m
en

ta
tio

n

C
oat

S
p

e
c

if
ic

a
ti

o
n

 C
o

s
t

 Verification Cost

June 20, 2013 SERE 2013

33

Application of the FV&V Tradeoff
Cuboid

We shall illustrate the use of the tradeoff
space with a qualitative comparison of
three common categories of FV&V
techniques

 Theorem Proving

 Classical Model Checking

 Execution-based Model Checking

June 20, 2013 SERE 2013

34

Application of the FV&V Tradeoff
Cuboid (cont’d)

Theorem Proving
 Examples: ACL2/PL; STeP/PLTL; PVS/HOL

 Existing theorem provers have rather weak
specification languages
 The more automated the theorem prover, the more

restrictive is its specification language

 The behavior expressed in the specification not
easily visualized

 Need to create a model to express behavior of a
given program using the specification language
 The new model will not cover all aspects of the original

program

 Need human driver to guide the verification
process

June 20, 2013 SERE 2013

35

Application of the FV&V Tradeoff
Cuboid (cont’d)

Theorem Proving (cont’d)

Im
ple

m
en

ta
tio

n c
ost

S
p

e
c

if
ic

a
ti

o
n

 C
o

s
t

 Verification cost

TP

Im
ple

m
en

ta
tio

n

C
ove

ra
ge

S
p

e
c

if
ic

a
ti

o
n

 C
o

v
e

ra
g

e

 Verification Coverage

TP

June 20, 2013 SERE 2013

36

Application of the FV&V Tradeoff
Cuboid (cont’d)

Model Checking

 Examples: SPIN/PLTL or Büchi-automata;
UPPAAL/CTL

 Similar to TP in terms of the expressive
power of their specification languages

 The behavior expressed in the
specification not easily visualized

 Need to create abstract model from large
programs to avoid state-space explosion

 100% automatic model checking process

June 20, 2013 SERE 2013

37

Application of the FV&V Tradeoff
Cuboid (cont’d)

Model Checking (cont’d)

Im
ple

m
en

ta
tio

n c
ost

S
p

e
c

if
ic

a
ti

o
n

 C
o

s
t

 Verification cost

TP

MC

Im
ple

m
en

ta
tio

n

C
ove

ra
ge

S
p

e
c

if
ic

a
ti

o
n

 C
o

v
e

ra
g

e

 Verification Coverage

MC, TP

June 20, 2013 SERE 2013

38

Application of the FV&V Tradeoff
Cuboid (cont’d)

Execution-based Model Checking

 Combination of Runtime Verification (RV) and
Automatic Test Generation (ATG)

 Examples: StateRover, Java Path Finder (JPF)

 StateRover

 Specification language is Turing equivalent

 The UML-like statechart assertions are easier to create
and understand than the text-based specifications

 Need to insert “probes” in target code

 Coverage depends on the ATG, usually not be 100%

 Java Path Finder

 Instrument Java code with assertions

 Use symbolic execution, could be 100% if enough space June 20, 2013 SERE 2013

39

Application of the FV&V Tradeoff
Cuboid (cont’d)

Execution-based Model Checking (cont’d)

Im
ple

m
en

ta
tio

n

C
ove

ra
ge

S
p

e
c

if
ic

a
ti

o
n

 C
o

v
e

ra
g

e

 Verification Coverage

EMC

MC, TP

Im
ple

m
en

ta
tio

n c
ost

S
p

e
c

if
ic

a
ti

o
n

 C
o

s
t

 Verification cost

EMC

TP

MC

June 20, 2013 SERE 2013

Computer-Aided V&V Process

Given scalability, cost, and coverage
considerations, we advocate the use of
a computer-aided V&V process that
uses:

 Statechart assertions

 Runtime execution monitoring

 Scenario-based testing

We have explored this in terms of
independent V&V (IV&V)

40 SERE 2013 June 20, 2013

Our IV&V Framework

Incorporates advanced computer-aided

validation techniques to the IV&V of

software systems

Allows the IV&V team to capture both

 Its own understanding of the problem

 The expected behavior of any proposed

system for solving the problem via an

executable system reference model

41 SERE 2013 June 20, 2013

Some Definitions of Terms

Developer-generated requirements

 The requirements artifacts produced by the

developer of a system

System Reference Model (SRM)

 The artifacts developed by the IV&V

team’s own requirements effort

42 SERE 2013 June 20, 2013

Contents of the SRM

Use cases and UML artifacts

Formal assertions to describe precisely
the necessary behaviors to satisfy
system goals (i.e., to solve the problem)
with respect to

 What the system should do

 What the should not do

 How the system should respond under
non-nominal circumstances

43 SERE 2013 June 20, 2013

Starting Point

Development of formal, executable

representations of a system’s

properties, expressed as a set of

desired system behaviors

44 SERE 2013 June 20, 2013

Use Cases and UML Artifacts
of the SRM

45 SERE 2013 June 20, 2013

Stakeholder’s Input
(mission statements, operation concepts

documents, user expectations, etc.)

Use Case Scenarios

Dynamic UML Models
(Message Sequence Charts, Activity

Diagrams etc.)

Static UML Models
(Object Class Diagrams)

Use of Assertions

• One statechart assertion for each
behavior of interest

• Can have nondeterminism in statechart
assertions because we must address
existential conditions (use of existential
quantifier) instead of just the universal
quantifier

46 SERE 2013 June 20, 2013

Use of Statechart Assertions

Start with high-level requirement

 R1. The track processing system can only handle

a workload not exceeding 80% of its maximum

load capacity at runtime

Reify R1 into lower level requirement

 R1.1 Whenever the track count (cnt) Average

Arrival Rate (ART) exceeds 80% of the

MAX_COUNT_PER_MIN, cnt ART must be

reduced back to 50% of the

MAX_COUNT_PER_MIN within 2 minutes and cnt

ART must remain below 60% of the

MAX_COUNT_PER_MIN for at least 10 minutes

47 SERE 2013 June 20, 2013

Statechart Assertion

48 SERE 2013 June 20, 2013

On-Entry/timer120.restart(); cnt = 0;

On-Entry/timer600.restart(); cnt = 0;

On-Entry/nTime = primary.getTime(); cnt = 0;

Validation of Assertions

Formal assertions must be executable
to allow the modelers to visualize the
true meaning of the assertions via
scenario simulations

One way to do this is to use an iterative
process that allows the modeler to

 Write formal specifications using Statechart
assertions

 Validate the correctness of the assertions
via simulated test scenarios within the
JUnit test-framework

49 SERE 2013 June 20, 2013

Use of Scenarios

50 SERE 2013 June 20, 2013

Identify typical

scenarios

Capture

Natural Language

Requirements

Write requirements as

statechart assertions

Run test cases against

the generated code

Assertion’s

behavior satisfies

the conceptual

requirement as

understood by the

modeler

Create scenario-

based test cases

no

Create more test

cases from

alternative scenarios

yes

Use test cases and assertions for test

automation and runtime monitoring

no

incorrect translation

of natural language

specs to assertions

incorrect translation

of requirement to

natural language

3

2

1

to detect any incorrect

cognitive understanding

of requirements

Is there other

alternative

scenarios ?

yes

End-to-end Validation Process
Start by testing individual assertions using the
scenario-based test cases to validate the
correctness of the logical and temporal
meaning of the assertions

Next test the assertions using the scenario-
based test cases subjected to the constraints
imposed by the objects in the SRM
conceptual model

Then use an automated tool to exercise all
assertions together to detect any conflicts in
the formal specification

51 SERE 2013 June 20, 2013

Pictorial View of Validation

52 SERE 2013 June 20, 2013

Stakeholder’s Input
(mission statements, operation concepts

documents, user expectations, etc.)

Use Case Scenarios

Dynamic UML Models
(Message Sequence Charts, Activity

Diagrams etc.)

Static UML Models
(Object Class Diagrams)

Executable Assertions

JUnit Test

Framework

White-box

Automatic Tester

(1) Tests driven by

use case scenarios

without the

application

context

(2) Tests driven by

use case scenarios

with the application

context

(3) Tests driven

by white-box tester

for detecting assertion

(and requirement) conflicts

Runtime Verification

Uses executable SRMs

Monitors the runtime execution of a system

and checks the observed runtime behavior

against the system’s formal specification

 It serves as an automated observer of the

program’s behavior and compares it with

the expected behavior per the formal

specification

Requires that the software artifacts produced

by the developer be instrumented

53 SERE 2013 June 20, 2013

Execution-based Model Checking
Can be used if state-based design
models are available

A combination of RV and Automatic
Test Generation (ATG)

 Large volumes of automatically
generated tests are used to exercise
the program or system under test,
using RV on the other end to check
the SUT’s conformance to the formal
specification

54 SERE 2013 June 20, 2013

Pictorial View of EMC

55 SERE 2013 June 20, 2013

Statechart model with embedded

statechart assertions
JUnit test suite

Auto-generated

(white box)

test cases

isSuccess()

StateRover Statechart Model

Primary Thread

Prmary
Statechart

Assertion Thread

Assertion

Some Ways to Use Auto-
generated Tests

To search for severe programming

errors, of the kind that induces a JUnit

error status, such as

NullPointerException

To identify test cases which violate

temporal assertions

To identify input sequences that lead the

statechart under test to particular states

of interest

56 SERE 2013 June 20, 2013

An Example

StateRover generated WBTestCase

creates sequences of events and

conditions for the state chart under test

 Only sequences consisting of events that

the SUT or some assertion is sensitive to,

by repeatedly observing all events that

potentially affect the SUT when it is in a

given configuration state, selects one of

those events and fires the SUT using this

event

57 SERE 2013 June 20, 2013

Hybrid Model- and
Specification-based WBATG

StateRover’s WBTestCase auto-
generates

 Events

 Time-advance increments, for the correct
generation of timeoutFire events

 External data objects of the type that the
statechart prototype refers to

WBATG observes all entities, namely,
the SUT and all embedded assertions

 It collects all possible events from all of
those entities

58 SERE 2013 June 20, 2013

Verification of Target Code

If only executable code is available, the
IV&V team can use the StateRover
white-box tester in tandem with the
executable assertions of the SRM to
automate the testing of the target code
produced by the developer

 Executable assertions of the SRM
 Keep track of the set of possible next events to

drive the SUT

 Serve as the observer for the RV during the test

59 SERE 2013 June 20, 2013

Automated Testing Using the
SRM

60 SERE 2013 June 20, 2013

SUT -

(instance of class model)
Assertions

ExternalAssertionChecker

WBATG

1. Observe events,

data, time delays

3. Dispatch input event and data

4. Output events

Timer

SUT - model

(instance of class model)

Implement time delays

5. isSuccess()

2. incrTime()

61

Questions?

June 20, 2013 SERE 2013

62

Backup Slides

June 20, 2013 SERE 2013

63

Example 1

What does it mean by

“generate a report once every 30 days
until the project is complete ”?

What happen if we complete the
project in 15 days? Do we need to
submit a generate?

June 20, 2013 SERE 2013

64

Example 2

Sequencing behaviors like

“If pump pressure is turned Low then High
and then Low again all within 10 milliseconds
then pump should not be High for at least 20
additional milliseconds ”

 are only observable at runtime and at such a
time scale that make human intervention at
runtime impractical

10ms 20ms

x

June 20, 2013 SERE 2013

65

Example 3

Logical behavior:

 Given two positive numbers x and e,
the square root function sqrt(x) must
satisfy the requirement:

 | x – sqrt(x) * sqrt(x) | < e.

June 20, 2013 SERE 2013

66

Example 4

Sequencing Behavior:

 Once engine is turned off,
compartment lights must be on until
driver door is opened.

June 20, 2013 SERE 2013

67

Example 5

Timing constraint:

 The sqrt() function must complete its
computation and return an answer
within 200 milliseconds from the time it
is called.

June 20, 2013 SERE 2013

68

Example 6

Time-series constraints:

 Whenever the system load (L) exceeds
75% of the MaxLoad, L must be
reduced back to 50% of the MaxLoad
within 1 minute and must remain at or
below 50% of the MaxLoad for at least
10 minutes.

June 20, 2013 SERE 2013

69

Example of Conducting
Assertion-oriented Specification

Start with high-level requirement

 R1. The system shall not exceed 75% of its
maximum load capacity at runtime.

Reify R1 into lower level requirement

 R1.1 Whenever the system load (L) exceeds 75%
of the MaxLoad, L must be reduced back to 50%
of the MaxLoad within 1 minute and must remain
at or below 60% of the MaxLoad for at least 10
minutes.

June 20, 2013 SERE 2013

70

Continuation of Example

Map R1.1 to a formal assertion expressed
as a Statechart assertion

June 20, 2013 SERE 2013

71 June 20, 2013 SERE 2013

