
Safe Coding Practices!
 Leveraging A Suite of Android

Application Analysis Tools"

Ryan Johnson, Angelos Stavrou"
Kryptowire & George Mason University!

Introduction!
p  Google Play (formerly "

Android Market) has "
experienced significant "
growth!
n  Wikipedia claims Google Play currently has 800,000+

applications as of February, 2013"
!

p  Proliferation of third-party application websites!
n  Can contain repackaged applications that have

malicious functionality and pirated applications!
n  May have little or no application vetting!

p  A deeper inspection of Android applications is
warranted!

Android Application Analysis approaches!

p  Static Analysis!
n  Enumerate API calls!
n  Permission analysis!

p  INTENTsify!
n  Proper intent usage!
n  Identify target of inter/intra-app communication!

p  Dynamic Analysis!
n  Execute app in custom emulator using forced-path execution!
n  Log parameter values to sensitive API calls!

p  Manual Analysis and Application instrumentation!
n  Look at the code!
n  Directly modify application code!
n  Dump state of variables!

Android Permissions!
p  Android applications use a permission model!

n  Applications request permissions to sensitive
resources that are accessed through Android API
calls, Intents, and content providers which may
require one or more permissions!

n  Users may not be familiar with the functionality
associated with each Android permission!

p  Application installation!
n  Installation is done on an all or nothing basis in

regard to an application’s permissions!
p  Cannot selectively deny permissions!

n  Permission set stays static after installation!

Android API!
p  Android API documentation "

is incomplete!
n  Many API calls that require a permission do not

indicate this fact on the Android Developers website!

p  There is a mapping from certain API calls to the
Android permissions!
n  Some API calls require no permission!
n  Other API calls may require one or multiple

permissions!

p  Android permissions are requested in the
AndroidManifest.xml file!
n  Certain permissions require a system process ID !
!

Identifying API calls !
p  Enumerate all Android permissions!

n  android.Manifest.permission class contains all
permissions names as values of the class’ constants!

n  New permissions sometimes can be added with each
new release of the Android OS !

p  Utilize established mappings from researcher!
n  Berkeley researchers released a mapping!

p  Also released a tool named Stowaway!
n  University of Toronto researchers released an even

more complete mapping from their tool named
Pscout!

n  Android API calls, Intents, constants, and content
providers!

!

Static Analysis Program!
p  Android permission mapping!

n  Used Berkeley’s mapping and Pscout mapping!
p  Process!

n  Extract permissions requested from the manifest!
n  Disassemble application with apktool into smali!
n  Parse the smali files for permission-protected API

calls and string literals!
n  Record any discrepancy between requested and used

permissions depending on application functionality!
n  Generate output for analysis!

p  False positives and false negatives!
n  Calls may reside in dead code!
n  Calls may reside in a binary!

!

Static Analysis Program!

p  Important method calls!
n  Reflection!
n  Commands!
n  Libraries/classes loaded!
n  File access!
n  Media events!
n  Telephony events!
n  Network activity!
n  Intents/broadcast receivers!

!

Static Analysis Program!
!
!
!
!

Demonstration!
!

INTENTsify Program!

p  Focuses on intent (mis)usage!

p  Static analysis with partial execution of code!

p  Look for possible vulnerabilities with intents!

p  Two main types of issues!
n  Unprotected components – other applications can

launch these components!
n  Possible hijacking – using an implicit Intent using an

action string which can cause a collision!

!

INTENTsify Program!

p  Unprotected Activity/Service/Receiver!
n  Components can be launched from outside the

application"
!

n  Needs to have an intent filter declared!
p  Sets “exported” to true"
!

n  Two possible fixes!
p  Specifically setting “exported” to false!
p  Use custom permission for component!

!

INTENTsify Program!

p  Possible Broadcast/Service/Activity hijacking!
n  Occurs during implicit intent calls!
n  Malicious eavesdropping!
n  Extract information from intent!
n  Intercept intent that was sent out and send back

maliciously crafted data!
n  Possible fixes!

p  Always use explicit calls when possible!
p  Again, custom permissions!

!

INTENTsify Program!

p  Internal Implicit Intent!
n  Always use explicit intents for internal app calls!

p  System broadcast receiver without check!
n  Special type of broadcast injection where the receiver

is set up to only handle protected system broadcasts!
n  Action string should be checked!
n  Explicit call can still be made to the receiver!

p  This may lead to unexpected behavior!

!

INTENTsify Program!

p  Not every issue is dire in nature!

p  Determine if component/intent call is
responsible for sensitive data/functionality!

p  Rule of thumb: always use explicit intents if
possible!

!

INTENTsify Program Framework!

p  Statically search for Intent creation!
n  Once found, execute code using custom emulator

until the Intent is sent or the method returns!
n  If the Intent is stored in a static/instance variable,

then find where the static/instance variable is
referenced and continue execution from there!

n  If parameter to Intent creation is a parameter to the
method call which contains Intent creation, locate
that method and start execution from there!
p  Can backtrack methods to a user-set number of

levels back!
n  Examine Intent object at the time it is sent to

determine if it is an explicit or implicit Intent!

!

INTENTsify Program Framework!

p  Parse the AndroidManifest.xml file!
n  Enumerate each application component!
n  Check to see if each is has the exported tag set to false

and check to see if a custom permission is required!
n  The Launcher component is always exported!
n  If an application component has IntentFilter(s), then

the component is exported by default unless the
exported tag is set to false!

n  If an application component does not have any
IntentFilters, then the component is not exported by
default!

!

INTENTsify Program Demo!
!
!
!
!

Demonstration!
!

Dynamic Analysis Framework!
p  Code analysis framework that performs forced-

path execution of Android applications using
commodity hardware!

p  Operates on an APK file and does not require
source code for the application!

p  Uses custom emulator and does not utilize the
emulator or an Android device!

p  Creates logs of parameter values to sensitive
API calls, control flow graphs, and method call
graphs!

!

Motivation!
p  Forced-path execution stresses application code

and can reveal hidden functionality!
n  Some branches require very specific conditions!
n  Attempts to enter all branches if time is available!

p  Controls the result of the evaluation of
conditional and switch statements!

p  Log parameters to sensitive API calls!
n  Examining the parameters on a granular level will

reveal intent and provide context to the call!

!

Categories of sensitive API calls!

p 496 total API calls from the categories
below!
n Reflection – target of reflective calls!
n Command execution – su, rm, nc!
n Network I/O – creation of sockets, data

transfer!
n  JNI calls – native calls!
n File I/O – file reads and writes!
n Media events – taking pictures, movies,

etc.!

!

Categories of sensitive API calls cont.!

p  496 total API calls from the categories
below!
n  Media events – taking pictures, movies, etc.!
n  Telephone events – Android ID, text

messages!
n  Crypto events – Key values, plain/ciphertext !
n  Libraries loaded – name of library files!
n  Content Providers – Databases usage, queries!
n  Sending of Intents – Inter/intra-app

communication!
n  Location events – GPS usage!
n  NFC events, Bluetooth events, etc.!

!

Android Permissions again!
p  A permission may be used "

benignly or maliciously "
depending on expected"
behavior!
n  SEND_SMS permission can be "

used to send SMSs to premium "
numbers or solely to send a thank "
you SMS to the user for purchasing "
the application!

n  INTERNET permission can be"
used to download ads or to "
download an undesirable binary!

!

Analysis Framework!
p  Use baksmali to obtain smali files!

n  Smali is human-readable Davlik assembly!
p  Davlik bytecode contains 226 opcodes !
p  Developed a Java implementation for each

Dalvik instruction!
p  Parse and obtain information from application's

AndroidManifest.xml file!
p  Iterate through each application component!
p  Call any Java API calls and third-party libraries

using reflection!
n  Android API contains a subset of the Java API!

p  Model execution using a binary tree!

!

Java source code and Dalvik bytecode!
!
!

for (int i = 0; i < 3; i++) {!
 ! if (i == 4) {!
 ! ! System.out.println("Will never be reached");!
 ! }!
}!
 const/4 v0, 0x0!
 :goto_0!
 const/4 v2, 0x3!
 if-lt v0, v2, :cond_0!
 return-void!
 :cond_0!
 const/4 v2, 0x4!
 if-ne v0, v2, :cond_1!
 sget-object v2, Ljava/lang/System;->out:Ljava/io/PrintStream;!
 const-string v3, "Will never be reached"!
 invoke-virtual {v2, v3}, Ljava/io/PrintStream;->println(Ljava/lang/String;)V!
 :cond_1!
 add-int/lit8 v0, v0, 0x1!
 goto :goto_0!

!

Moderating API calls!
p  Contains list of sensitive API calls!
p  During logging, the call can be blocked from executing

or have its parameters changed prior to execution!
p  Calls that are always blocked!

n  java.lang.Runtime.exec(*)!
n  java.lang.System.setProperties(*)!
n  java.util.concurrent.CountDownLatch.await()!
n  java.lang.Runtime.exit(int) and the like!
n  java.io.File.delete()!
n  Calls that can block indefinitely!

p  Recursively traverse Method objects to reflective calls
until ultimate target is found!
n  Reflection may be used to call a reflective call and be

embedded any number of levels deep!

!

 Bounding Execution!
p  Set upper limit to number of loop iterations!

n  Or let iterate as conditions dictate!
p  Set upper bound to depth of recursive calls!
p  Detect infinite loops!

n  Only iterate once and then exit!
p  Make attempt to detect infinite loops!
p  Set a time limit to strictly bound execution!
p  Improve performance while reducing precision!

!

Representing Registers!
p  Davlik uses a register-based architecture as

opposed to a stack-based architecture!
p  Objects and primitive data types are referenced

by a register number!
p  Use custom data type to emulate Dalvik

registers!

!

Modeling Execution!

!

Abstracting User Input from an event-driven OS!
p  As application registers event "

 listeners, immediately execute"
 the corresponding code"
!

p  Force execution into callback "
 methods (onResume,"
 onLowMemory, etc.) "
to mimic component "
 lifecycle"
!

p  Return static or random value"
 for methods to obtain "
user-input for "
android.widget.TextView "
and its subclasses!

!

Dynamic Analysis Program Demo!
!
!
!
!

Demonstration!
!

Case Study of Major Carrier’s Mobile Application!

p  Output below shows fully qualified API call,
parameter values, file in which API call occurs,
and line number !

javax.crypto.spec.SecretKeySpec.SecretKeySpec(byte[], java.lang.String)!

Key (byte representation): 68 36 36 76 64 115 84 74 48 117 82 110 69 121 33 50!

Key (String representation): D$$L@sTJ0uRnEy!2!

Algorithm: AES!

File name: redacted/smali/com/redacted/redacted/util/codec/DSSHtmlEncryption.smali!

Line number: 254!

!

javax.crypto.spec.IvParameterSpec.IvParameterSpec(byte[])!

Initialization Vector (byte representation): 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48!

Initialization Vector (String representation): 0000000000000000!

File name: redacted/smali/com/redacted/redacted/util/codec/DSSHtmlEncryption.smali!

Line number: 112!

!

Case Study of Major Carrier’s Mobile Application!

p  Key and IV value may be randomly generated or hard-
coded!

p  Hard-coded keys are generally bad programming
practice since they can be extracted from the application
code and then used by an adversary!

p  Generating a random key and then using a secure key
exchange protocol is the preferred way to exchange
sensitive keying material!

!

Case Study of Major Carrier’s Mobile Application!

p  Both are implemented as final static variables in
com.redacted.redacted.util.codec.DSSHtmlEncryption.java!
n  Setting key value (smali format)!

 const-string v0, "D$$L@sTJ0uRnEy!2"!

!

 sput-object v0, Lcom/redacted/redacted/util/codec/DSSHtmlEncryption;->key:Ljava/lang/String;!

!

 sget-object v0, Lcom/redacted/redacted/util/codec/DSSHtmlEncryption;->key:Ljava/lang/String;!

!

 invoke-virtual {v0}, Ljava/lang/String;->getBytes()[B!

!

 move-result-object v0!

!

 sput-object v0, Lcom/redacted/redacted/util/codec/DSSHtmlEncryption;->keyValue:[B!

p  Smali is a human-readable assembly language for Dalvik!

!

Case Study of Major Carrier’s Mobile Application!

p  Setting of IV value shown below (smali format)!
 const/16 v0, 0x10!

!

 new-array v0, v0, [B!

!

 fill-array-data v0, :array_0!

!

 sput-object v0, Lcom/redacted/redacted/util/codec/DSSHtmlEncryption;->ivParams:[B!

!

 return-void!

 !

 :array_0!

 .array-data 0x1!

 0x30t!

 0x30t!

 0x30t!

 0x30t!

 ……….!

!

!

Case Study of Major Carrier’s Mobile Application!

p  Found login tokens in /data/data/redacted/
shared_prefs"
!

root@android:/data/data/redacted/shared_prefs # cat
saveLoginDetails0.xml!
<?xml version='1.0' encoding='utf-8' standalone='yes' ?>!
<map>!
<string name="savedPassword">Skw9nzgmyaD4mPIUQguk3N
+MW8vkbfd5oxTEaBwPC+k4InlIjr+HWDNaDuJGOe9W</string>!
<string name="loginMode">Wireless</string>!
<string name="savedWirelessNum">2028675309</string>!
</map>!

!

Case Study of Major Carrier’s Mobile Application!

p  Tried to decrypt login token with hard-coded key and
IV but it does not decrypt properly "
!

p  <string name="savedPassword">Skw9nzgmyaD4mPIUQguk3N
+MW8vkbfd5oxTEaBwPC+k4InlIjr+HWDNaDuJGOe9W</string>!

p  Followed decryption process in DSSHtmlEncryption.java!
n  Create AES key and IV value with hard-coded values!
n  Decode savedPassword from Base64 String!
n  Perform decryption!
n  Doesn’t decrypt properly (i.e., encrypted with different key)!
n  Key appears to reside on Carrier’s server!

!

Case Study of Major Carrier’s Mobile Application!
p  com.redacted.redacted.activity.login.LoginUnifiedActivity is the

application component that uses the hard-coded credentials"
!

p  Occurs as a callback from startActivityForResult() API call !
p  Enumerate the activity application components that are called from

LoginUnifiedActivity with startActivityForResult()!
n  com.redacted.redacted.activity.login.UpdatePasswordActivity!
n  com.redacted.redacted.dialog.DialogActivity!
n  Intent action:android.intent.action.VIEW with URI of http://

redacted.com/redacted !
p  Tracing back calls leads to the code being reachable from

com.redacted.redacted.activity.login.UpdatePasswordActivity!

!

Case Study of Major Carrier’s Mobile Application!
p  Due to the nature of forced-path execution, we need to ensure that

conditions actually exist to exercise the portion of code with the
hard-coded credentials!

p  We utilize application repackaging to insert code to print the value
of variables and to denote that portions in the code are actually
reached!

p  Application repackaging can occur maliciously where a legitimate
application is modified to infiltrate data and perform malicious
activities as it masquerades as the legitimate app!

!

Malicious / Rogue Mobile Apps - Defined!
p  Rogue mobile apps can be best defined as follows:!

n  Created by non-authorized individuals or entities!
n  Seek to confuse consumer to believe it is published from an

authorized source – similar name, use of logo, or similar
publisher!

n  Similar to other applications but its objectives are to
compromise other apps on the device!

!
p  Malware mobile apps have different objectives:!

n  Similar to desktop malware or viruses – device disabling!
n  Data syphon – attempt to steal device data and PII information

to third parties!
n  Man in the middle – serve as a proxy - behavior to end user is

seamless, credentials are taken!

!

Case Study of Major Carrier’s Mobile Application!
p  The com.redacted.redacted.util.Logger class contains various

logging methods which are called throughout the program!

p  Examination of these methods shows that these methods do not do
perform any logging, except for when an error occurs!

p  These methods likely wrote to the Android OS log during
development but this was removed from the production code!

p  We inserted code to write to the Android OS log in these methods
to glean information about the application and various other
locations in the code!

!

Case Study of Major Carrier’s Mobile Application!
p  Below is an example of adding code (in red) to the log method to

make it write its parameters to the Android OS log "
!

.method public static log(Ljava/lang/String;)V!

 .locals 2!

 .parameter "msg"!

!

 .prologue!

 const/4 v0, 0x0!

!

 const-string v1, ”redactedrecomp-log"!

!

 invoke-static {v1, p0}, Landroid/util/Log;->d(Ljava/lang/String;Ljava/lang/String;)I!

!

 invoke-static {v0, p0}, Lcom/redacted/redacted/util/Logger;->log(Ljava/lang/String;Ljava/lang/String;)V!

!

 return-void!

.end method!

!

Case Study of Major Carrier’s Mobile Application!
p  Android log showing username and password written to log in

instrumented application. The normal application does not do this!
D/redactedrecompilation-log(2934): LoginActivity.doPasswordLogin: Wireless number
--->2028675309!

D/redactedrecompilation-log(2934): LoginActivity.doPasswordLogin: Password ---
>redacted!

D/redactedrecompilation-log(2934): LoginActivity.doPasswordLogin: Wireless number
--->2028675309!

D/redactedrecompilation-log(2934): LoginActivity.doPasswordLogin: Password ---
>redacted!

D/redactedrecompilation-log(2934): PageCache: getPageAsStream /data/data/
redacted.redacted.myWireless/files/cache/requests/getAuthentication/EN/
500_0_Login_Simplified.xml!

D/redactedrecompilation-log(2934): PageCache: getPageAsStream false!

D/redactedrecompilation-log(2934): PageCache: opening cache/requests/
getAuthentication/EN/500_0_Login_Simplified.xml!

!

!

!

Case Study of Major Carrier’s Mobile Application!
p  We instrumented various portions of the code to see what is

reached during manual testing of the application!

p  Save login credentials upon logging in!
p  Log out and rerun application!
p  Hit cancel for automatic login of saved"

 credentials!
p  Navigate to Update Password!
p  Enter password and press update!
p  This service has been unavailable for"

2 weeks or it will say the password"
does match even though this is to "
update the password!

!

Case Study of Major Carrier’s Mobile Application!
p  We also checked the forgot password option to see if it would

trigger the code, but there was system error blocking the action!

!

Case Study of Major Carrier’s Mobile Application!

p  Without access to the password updating service and
the forgot password service, we are not able to see what
the hard-coded key and IV are used to decrypt!

p  These may be disabled on the server end, so even if a
request comes in, it can be denied and the portion of
code cannot be exercised!

p  We did not want to use automated UI testing since we
do not want to make undesired changes to the Carrier
account we were testing!

!

Case Study of Popular Finance Application!

p  On the application’s website, they claim that
your data is safe even if you lose your phone!
n  This is not true assuming you can bypass the screen

lock!

n  Can be done with if USB debugging is enabled!

n  You can delete the pattern file programmatically!

!

p  All data stored using shared preferences!
n  PIN, Login token, Redacted account number, etc.!
!

!

Case Study of Popular Finance Application!

p  All data in the encrypted database!
n  Transactions!
n  Account details!
n  Credit Card number (in a certain scenario)!
!

p  Created repackaged Redacted Android
application that will look the same as the
normal Redacted application but leak bank
credentials!
n  Trojan Apps are the most common vector of attack!
n  Protecting the Application is the responsibility of the

developer!

!

Case Study of Popular Finance Application!

§  We accessed the
encrypted database and
made some changes using
the SQLCipher API!

§  We modified the balance
column in the account
table!

§  We modified the expense
column the in spending
table!

!

Case Study of Popular Finance Application!

p  Shared preferences is a mechanism to store
persistent private data on a per-application
basis!

n  Finance app encrypts the key-value pairs upon
insertion and decrypts them upon retrieval!

n  Finance app also encodes the key values so they
appear as a random double value (I.E.,
25581291.80006)!

n  Generally, keys appeared not to be stored but
generated at runtime when needed!

!

Case Study of Popular Finance Application!
p  Below are the contents of the shared preferences file for

Finance app. Contains encrypted key-value pairs!

!

Case Study of Popular Finance Application!
p  The key for the each device will always be the same!
p  The format of the key, in general, is the first 32 bytes of

the String below!
n  First 8 bytes of device id + “:” + android.os.Build.

DEVICE + “:” next 7 bytes of device id + “:” +
android.os.Build.MANUFACTURER + “:” +
android.os.Build.MODEL + “@#$#@%#%#@%$@^”!

p  On test phone before truncation: 9a1588bf:bravo:
3b1d8fbHTC:HTC Desire@#$#@%#%#@%$@^!

!

Case Study of Popular Finance Application!
p  On our test phone the 32-byte key was the following!

n  9a1588bf:bravo:3b1d8fbHTC:HTC De!
p  Mimicking the application code, we generated a Java

decryption routine to decrypt the key-value pairs in the
shared preferences file!

!

Case Study of Popular Finance Application!
p  Using the decryption routine from the previous slide, we

decrypted the entries in the shared preferences file and
decoded the key values of the key-value pairs!

p  107955989.43234 (token) - qjQsQv849IudGlIs1gD!

p  67600920.12018 (passcode) – 9879!

p  100066628.21724 (user id) – 65250291!

p  115738811.1195 (guid) – 24B2C3F6FDAAFE9C!

p  25581291.80006 (current version) – 1.5!

p  8538329.56202 (last update date) – 1369626642534!

p  214786401.18067 (RateMyApp Config) – 3;;1;;3;;7!

p  166605410.64793 (pod cookie) –
{"domain":"mobile.redacted.com","name":”redactedPN","path":"/","value":"
9"}"
!

!

Case Study of Popular Finance Application!

p  The finance app maintains an encrypted
database that contains finance account
information, bank account information, and
account transactions!

•  The database does not store bank credentials but has
a column that could be used to do so !

•  Table: fi_login – Column: blobCredentials!

!

Case Study of Popular Finance Application!
p  Intermediate key has the format of the device ID +

creation date + hard-coded literal String!
p  9a1588bf3b1d8fb1369622564342!%$_C++J!
p  Device ID –

android.provider.Settings.Secure.getString(this.getContentResolver()
, "android_id"); – 9a1588bf3b1d8fb!

p  Creation date – can be obtained from the timestamp
file!

p  Hard-coded String – in finance app’s String table with
a name of do_not_mess_with_me – !%$_C++J!

!

Case Study of Popular Finance Application!
p  The first 32 bytes of the String are used as an AES key

to encrypt the String !%$_C++J and the result will be
the key that is input into the SQLCipher API !

!

Case Study of Popular Finance Application!
p  Utilize SQLCipher API as finance app does to access DB!

!
p  Enumerate table names and query them individually!

n  SELECT * FROM [TABLE_NAME];!
p  Table names and schemas also available in the file

named db-init.sql in the finance app’s assests folder !

!

Case Study of Popular Finance Application!

p  The database has a few interesting tables!
•  account – bank account info (balance, id, etc.)!
•  transaction_bankcc – contains transaction data!
•  fi_login – some login data (although placeholder

appears to be present in db for bank credentials,
value is always null for blobCredentials)!

p  CREATE TABLE `fi_login` (`id` bigint(15) NOT NULL PRIMARY KEY ON
CONFLICT REPLACE,`status` int(10) NOT NULL, ! `lastUpdateDate` datetime,
`fiName` varchar(255), `lastUpdated` varchar(255), `financeStatus` int(10),
`errorMessage` varchar(255), `phone` varchar(32), `logo` varchar(128), `url`
varchar(255),`csMessage` varchar(255),`csMessageLink` varchar(255),
`provideCredentials` int(1), `blobCredentials` varchar, `isManual` int(1));!

!

Case Study of Popular Finance Application!

p  Another method exists to examine the contents
of the database!

•  Issue a few commands using ADB (Android Debugging Bridge)!
•  /yourPath/android-sdk-mac_x86/platform-tools/adb shell

setprop log.tag.SQLiteStatements VERBOSE!
•  Does not require application instrumentation!
•  Possibly requires PIN (if enabled) but does not require using

SQLCipher API!
•  Data from the local database can be observed when it is synced

with the finance app’s servers!

!

Case Study of Popular Finance Application!

p  The last 4 digits of a credit card account number
can be seen in the network traffic of an
instrumented app!

p  Transactions using a credit card generally do
not reveal the credit card account number!

p  We did notice one occurrence of the full credit
card number in the encrypted database!
n  Worst case scenario – A finance app user

loses their cell phone and has their credit
card number exposed!

!

Case Study of Popular Finance Application!

p  Mobile Software Developers make mistakes…!
n  Collect and/or Store PII information without

notifying the End- User!
n  Transmit PII information to their website or third

parties!
n  Enable other programs to get access to PII data!
!

p  Good Intentions but non-disclosed to the End-
User!
n  The application makes use of resources not disclosed

to the user: Camera, GPS Location, Microphone,
Read of PII (contacts, phone #s, IMEI, etc.)!

n  Perform Functionality without explicit End-User
permission !

!

Conclusion!
p  Give your application the appropriate

permission set!
p  Do not use hard-coded keys in an application!
p  Do not use keys that are predictable and easy to

generate!
p  Obfuscate your application to make reverse

engineering it more difficult (e.g., ProGuard)!
p  Use explicit intents and do not export

application components unless necessary!
p  Remove sensitive logging from production app!

n  Do not rely on android.util.Log.isLoggable(String,
int)!

p  Be aware of application repackaging!
!

Questions!
! ! !Thank you!!"

!
! ! ! !

!
!
!
!
!
!
!

! ! ! Questions?!
!

