Safe Coding Practices
Leveraging A Suite of Android
Application Analysis Tools

Ryan Johnson, Angelos Stavrou
Kryptowire & George Mason University

Introduction

Google Play (formerly

Android Market) has e GOOSIC play
experienced significant |
growth

m Wikipedia claims Google Play currently has 800,000+
applications as ot February, 2013

Proliferation of third-party application websites

= Can contain repackaged applications that have
malicious functionality and pirated applications

® May have little or no application vetting

A deeper inspection of Android applications is
warranted

Android Application Analysis approaches

Static Analysis
m Enumerate API calls

m Permission analysis

INTENTSsity

= Proper intent usage

= Identify target of inter/intra-app communication

Dynamic Analysis
= Execute app in custom emulator using forced-path execution

m Log parameter values to sensitive API calls

Manual Analysis and Application instrumentation

m Look at the code
m Directly modify application code

m Dump state of variables

Android Permissions

Android applications use a permission model

= Applications request permissions to sensitive
resources that are accessed through Android API
calls, Intents, and content providers which may
require one Or more permissions

m Users may not be familiar with the functionality
associated with each Android permission

Application installation

= Installation is done on an all or nothing basis in
regard to an application’s permissions

Cannot selectively deny permissions
m Permission set stays static after installation

Android API

Android API documentation
is incomplete

= Many API calls that require a permission do not
indicate this fact on the Android Developers website

There is a mapping from certain APT calls to the
Android permissions
= Some API calls require no permission

s Other API calls may require one or multiple
permissions

Android permissions are requested in the
AndroidManifest.xml file

= Certain permissions require a system process 1D

[dentifying API calls

Enumerate all Android permissions

m android.Manifest.permission class contains all
permissions names as values of the class’ constants

= New permissions sometimes can be added with each
new release of the Android OS

Utilize established mappings from researcher

m Berkeley researchers released a mapping
Also released a tool named Stowaway

m University of Toronto researchers released an even
more complete mapping from their tool named
Pscout

m Android API calls, Intents, constants, and content
providers

Static Analysis Program

Android permission mapping
m Used Berkeley’s mapping and Pscout mapping

Process
= Extract permissions requested from the manifest
m Disassemble application with apktool into smali

m Parse the smali files for permission-protected API
calls and string literals

m Record any discrepancy between requested and used
permissions depending on application functionality

= Generate output for analysis
False positives and false negatives

= Calls may reside in dead code
m Calls may reside in a binary

Static Analysis Program

Important method calls

m Reflection

@ Commands

m Libraries/ classes loaded

m File access

m Media events

= Telephony events

m Network activity

m Intents/broadcast receivers

Static Analysis Program

Demonstration

INTENTSsity Program

Focuses on intent (mis)usage
Static analysis with partial execution of code
Look for possible vulnerabilities with intents

Two main types of issues

= Unprotected components — other applications can
launch these components

m Possible hijacking — using an implicit Intent using an
action string which can cause a collision

INTENTSsify Program

Unprotected Activity /Service/Receiver

s Components can be launched from outside the
application

m Needs to have an intent filter declared
Sets “exported” to true

m Two possible fixes
Specifically setting “exported” to false
Use custom permission for component

INTENTSsify Program

Possible Broadcast/Service/ Activity hijacking
m Occurs during implicit intent calls

= Malicious eavesdropping

m Extract information from intent

|

Intercept intent that was sent out and send back
maliciously crafted data

m Possible fixes
Always use explicit calls when possible
Again, custom permissions

INTENTSsify Program

Internal Implicit Intent
= Always use explicit intents for internal app calls

System broadcast receiver without check

m Special type of broadcast injection where the receiver
is set up to only handle protected system broadcasts

m Action string should be checked
= Explicit call can still be made to the receiver
This may lead to unexpected behavior

INTENTSsify Program

Not every issue is dire in nature

Determine if component/intent call is
responsible for sensitive data/functionality

Rule of thumb: always use explicit intents if
possible

INTENTSsity Program Framework

Statically search for Intent creation

®= Once found, execute code using custom emulator
until the Intent is sent or the method returns

m [f the Intent is stored in a static/instance variable,
then find where the static/instance variable is
referenced and continue execution from there

= If parameter to Intent creation is a parameter to the
method call which contains Intent creation, locate
that method and start execution from there

Can backtrack methods to a user-set number of
levels back

= Examine Intent object at the time it is sent to
determine if it is an explicit or implicit Intent

INTENTSsity Program Framework

Parse the AndroidManifest.xml file

Enumerate each application component

Check to see if each is has the exported tag set to false
and check to see if a custom permission is required

The Launcher component is always exported

If an application component has IntentFilter(s), then
the component is exported by default unless the
exported tag is set to false

If an application component does not have any
IntentFilters, then the component is not exported by
default

INTENTSsify Program Demo

Demonstration

Dynamic Analysis Framework

Code analysis framework that performs forced-
path execution of Android applications using
commodity hardware

Operates on an APK file and does not require
source code for the application

Uses custom emulator and does not utilize the
emulator or an Android device

Creates logs of parameter values to sensitive
API calls, control flow graphs, and method call
graphs

Motivation

Forced-path execution stresses application code
and can reveal hidden functionality

m Some branches require very specific conditions

= Attempts to enter all branches if time is available

Controls the result of the evaluation of
conditional and switch statements

Log parameters to sensitive API calls

= Examining the parameters on a granular level will
reveal intent and provide context to the call

private static void executeCommand(String command) {
try {
Runtime.getRuntime().exec(command);
} catch (I0Exception e) {
e.printStackTrace();
}
}

Categories of sensitive API calls

496 total API calls from the categories
below

m Reflection — target of reflective calls

m Command execution — su, rm, nc

m Network I/O — creation of sockets, data
transfer

m JNI calls — native calls
m File I/ O —file reads and writes

m Media events — taking pictures, movies,
etc.

Categories of sensitive APl calls cont.

496 total API calls from the categories
below
m Media events — taking pictures, movies, etc.

m Telephone events — Android ID, text
messages

= Crypto events — Key values, plain/ciphertext
m Libraries loaded — name of library files
= Content Providers — Databases usage, queries

m Sending of Intents — Inter/intra-app
communication

m Location events — GP’S usage
= NFC events, Bluetooth events, etc.

Android Permissions again

A permission may be used

benignly or maliciously App permissions
depending on expected Services that cost you money
N Directly call phone numbers
behavior
Hardware controls
= SEND_SMS permission can be
used to Send SMSS to premium Your accounts
numbers or solely to send a thank | o0

YOu SMS to the user fOI' purchasing Your personal information
the application Read contact data, write contact aata

Phone calls

= INTERNET permission can be Read phone state and identity
used to download adS or to Network communication

Full Internet access

download an undesirable binary

Analysis Framework

Use baksmali to obtain smali files
® Smali is human-readable Davlik assembly

Davlik bytecode contains 226 opcodes

Developed a Java implementation for each
Dalvik instruction

Parse and obtain information from application's
AndroidManifest.xml file

[terate through each application component

Call any Java API calls and third-party libraries
using reflection

= Android API contains a subset of the Java API
Model execution using a binary tree

Java source code and Dalvik bytecode

for (;1< 3;i++) |
if (i==4) {

System.out.println("Will never be reached");

:goto_0

const/4 v2, 0x3

if-1t v0, v2, :cond_0

return-void

:cond_0

const/4 v2, 0x4

if-ne v0, v2, :cond_1

sget-object v2, Ljava/lang/System;->out:Ljava/io/PrintStream;
const-string v3, "Will never be reached"

invoke-virtual {v2, v3}, Ljava/io/PrintStream;->println(Ljava/lang/String;)V
:cond_1

add-int/1it8 v0, v0, 0x1

goto :goto_0

Moderating API calls

Contains list of sensitive API calls

During logging, the call can be blocked from executing
or have its parameters changed prior to execution

Calls that are always blocked

= java.lang.Runtime.exec(*)

® java.lang.System.setProperties(*)

® java.util.concurrent.CountDownLatch.await()
® java.lang.Runtime.exit(int) and the like

® java.io.File.delete()

= Calls that can block indefinitely

Recursively traverse Method objects to reflective calls
until ultimate target is found

m Reflection may be used to call a reflective call and be
embedded any number of levels deep

Bounding Execution

Set upper limit to number of loop iterations
m Or let iterate as conditions dictate

Set upper bound to depth of recursive calls

Detect infinite loops
= Only iterate once and then exit

Make attempt to detect infinite loops

Set a time limit to strictly bound execution
Improve performance while reducing precision

Representing Registers

Davlik uses a register-based architecture as
opposed to a stack-based architecture

Objects and primitive data types are referenced
by a register number

Use custom data type to emulate Dalvik
registers

\

Variable Reglster Object
Name Number Type
Object
(Value) (Representauon) (Parameters)
Actual Data
(Type) (Flelds) (D]ect) (K)

RegisterEntry
ﬁ

Modeling Execution

Execution paths for activity called edu.gmu.csis.refiectionapp Conditional of the application called ReflectionApp

@0. Fil Condtigndl gl Lng f@

et ttn oo D> gt o e Do e 0,001

@b Condions! sral Lng: @ @ﬁo Cornftionalsmal, Ling @

@m s, Fils ool el U @ Ty o, i Conlond sl L 567N § stm Tishobr,Fl Conrs el 1@ de-’w«: Tisheben,Fl Condlord e Lo 1@

@ Condlond s U‘O@

Ty bibdon e Do, DT> C_ e eon i Crontl v 19D

Ty oo, Fil, Conditorsl s, L 136, NID: 10

@wz Iishahbon, i Condr e, U 136@
e o e Cornn Lo 4,0
@yn: rished hne, Fik: Condtonal eml, Line: 1@ @yw: fiehod e, Fle: Condioral smll, Line: 158, NID: 13

Topee g, i Contors s, Ling 147 NID: 41

Type: e, Flo: Concitonsl.smal, Lin: 158, NID: 12

Abstracting User Input from an event-driven OS

As application registers event

listeners, immediately execute ;'36
the corresponding code F =
——

Force execution into callback s et - !
methods (onResume, | .

re— e
onLowMemory, etc.) ity \utm,
to mimic component I RS
lifecycle Agps it igher orrty _| onpatuse(, I
Return static or random value L o mJ
for methods to obtain s
user-input for e
android.widget.TextView b

Activity

and its subclasses | shutdown

Dynamic Analysis Program Demo

Demonstration

Case Study of Major Carrier’s Mobile Application

Output below shows fully qualified API call,
parameter values, file in which API call occurs,

and line number
javax.crypto.spec.SecretKeySpec.SecretKeySpec(byte[], java.lang.String)
Key (byte representation): 68 36 36 76 64 115 84 74 48 117 82 110 69 121 33 50
Key (String representation): D$$L@sTJOuRnEy!2
Algorithm: AES
File name: redacted /smali/com /redacted / redacted / util/ codec/ DSSHtmlEncryption.smali

Line number: 254

javax.crypto.spec.lvParameterSpec.IvParameterSpec(byte[])

Initialization Vector (byte representation): 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48
Initialization Vector (String representation): 0000000000000000

File name: redacted /smali/com /redacted / redacted / util/ codec/ DSSHtmlEncryption.smali

Line number: 112

Case Study of Major Carrier’s Mobile Application

Key and IV value may be randomly generated or hard-
coded

Hard-coded keys are generally bad programming
practice since they can be extracted from the application
code and then used by an adversary

Generating a random key and then using a secure key
exchange protocol is the preferred way to exchange
sensitive keying material

Case Study of Major Carrier’s Mobile Application

Both are implemented as final static variables in
com.redacted.redacted.util.codec. DSSHtmlEncryption.java

m Setting key value (smali format)
const-string v0, "D$$L@sTJOuRnEy!2"

sput-object v0, Lcom /redacted / redacted / util / codec/ DSSHtmlEncryption;->key:Ljava/lang/String;
sget-object v0, Lcom /redacted /redacted / util/ codec/ DSSHtmlIEncryption;->key:Ljava/lang/String;
invoke-virtual {v0}, Ljava/lang/String;->getBytes()[B

move-result-object vO

sput-object v0, Lcom /redacted /redacted / util/ codec/ DSSHtmlEncryption;->key Value:[B

Smali is a human-readable assembly language for Dalvik

Case Study of Major Carrier’s Mobile Application

Setting of IV value shown below (smali format)

const/16 v0, 0x10

new-array v0, v0, [B

fill-array-data v0, :array_0

sput-object v0, Lcom /redacted / redacted / util / codec/ DSSHtmlEncryption;->ivParams:[B
return-void

:array_0
.array-data 0x1
0x30t
0x30t
0x30t
0x30t

Case Study of Major Carrier’s Mobile Application

Found login tokens in /data/data/redacted/
shared_prefs

root@android:/data/data/redacted /shared_prefs # cat
saveLoginDetails0.xml

<?xml version="1.0" encoding="utf-8' standalone="yes' ?>
<map>

<string name="savedPassword">Skw9nzgmyaD4mPIUQguk3N
+MW8vkbfd50xTEaBwPC+k4Inlljr+ HWDNaDuJGOe9W</ string>

<string name="loginMode">Wireless</ string>
<string name="saved WirelessNum">2028675309< / string>

</map>

Case Study of Major Carrier’s Mobile Application

Tried to decrypt login token with hard-coded key and

IV but it does not decrypt properly

<string name="savedPassword">Skw9nzgmyaD4mPIUQguk3N
+MW8vkbfd50xTEaBwPC+k4Inlljr+ HWDNaDuJGOe9W</ string>

Followed decryption process in DSSHtmlIEncryption.java

Create AES key and IV value with hard-coded values
Decode savedPassword from Base64 String

Perform decryption

Doesn’t decrypt properly (i.e., encrypted with different key)

Key appears to reside on Carrier’s server

Case Study of Major Carrier’s Mobile Application

com.redacted.redacted.activity.login.LoginUnified Activity is the
application component that uses the hard-coded credentials

Occurs as a callback from startActivityForResult() API call

Enumerate the activity application components that are called from
LoginUnified Activity with startActivityForResult()

s com.redacted.redacted.activity.login.UpdatePassword Activity
m com.redacted.redacted.dialog.DialogActivity

m Intent action:android.intent.action.VIEW with URI of http:/ /
redacted.com/redacted

Tracing back calls leads to the code being reachable from
com.redacted.redacted.activity.login.UpdatePassword Activity

Case Study of Major Carrier’s Mobile Application

Due to the nature of forced-path execution, we need to ensure that
conditions actually exist to exercise the portion of code with the
hard-coded credentials

We utilize application repackaging to insert code to print the value
of variables and to denote that portions in the code are actually
reached

Application repackaging can occur maliciously where a legitimate
application is modified to infiltrate data and perform malicious
activities as it masquerades as the legitimate app

Malicious / Rogue Mobile Apps - Defined

Rogue mobile apps can be best defined as follows:
m Created by non-authorized individuals or entities

= Seek to confuse consumer to believe it is published from an
authorized source — similar name, use of logo, or similar

publisher

= Similar to other applications but its objectives are to
compromise other apps on the device

Malware mobile apps have different objectives:
= Similar to desktop malware or viruses — device disabling

m Data syphon — attempt to steal device data and PII information
to third parties

®= Man in the middle — serve as a proxy - behavior to end user is
seamless, credentials are taken

Case Study of Major Carrier’s Mobile Application

The com.redacted.redacted.util. Logger class contains various
logging methods which are called throughout the program

Examination of these methods shows that these methods do not do
perform any logging, except for when an error occurs

These methods likely wrote to the Android OS log during
development but this was removed from the production code

We inserted code to write to the Android OS log in these methods
to glean information about the application and various other
locations in the code

Case Study of Major Carrier’s Mobile Application

Below is an example of adding code (in red) to the log method to
make it write its parameters to the Android OS log

.method public static log(Ljava/lang/String;)V
Jocals 2

.parameter "msg"

.prologue

const/4 v0, 0x0

const-string v1, “redactedrecomp-log"

invoke-static {v1, p0}, Landroid / util/ Log;->d(Ljava/lang/String;Ljava/lang/String;)I

invoke-static {v0, p0}, Lcom/redacted /redacted / util/ Logger;->log(Ljava/lang/String;Ljava/lang/String;)V

return-void

.end method

Case Study of Major Carrier’s Mobile Application

Android log showing username and password written to log in
instrumented application. The normal application does not do this

D /redactedrecompilation-log(2934): LoginActivity.doPasswordLogin: Wireless number
--->2028675309

D/redactedrecompilation-log(2934): LoginActivity.doPasswordLogin: Password ---
>redacted

D /redactedrecompilation-log(2934): LoginActivity.doPasswordLogin: Wireless number
--->2028675309

D /redactedrecompilation-log(2934): LoginActivity.doPasswordLogin: Password ---
>redacted

D/redactedrecompilation-log(2934): PageCache: getPageAsStream /data/data/
redacted.redacted.myWireless/files / cache / requests / getAuthentication /EN /
500_0_Login_Simplified.xml

D /redactedrecompilation-log(2934): PageCache: getPageAsStream false

D /redactedrecompilation-log(2934): PageCache: opening cache/requests/
getAuthentication/EN/500_0_Login_Simplified.xml

Case Study of Major Carrier’s Mobile Application

We instrumented various portions of the code to see what is
reached during manual testing of the application

Save login credentials upon logging in
Log out and rerun application

Hit cancel for automatic login of saved
credentials

We apologize for the inconvenience

. but this service is temporarily
Navigate to Update Password unavailable.

Enter password and press update —

This service has been unavailable for

2 weeks or it will say the password
does match even though this is to

update the password

Case Study of Major Carrier’s Mobile Application

We also checked the forgot password option to see if it would
trigger the code, but there was system error blocking the action

Case Study of Major Carrier’s Mobile Application

Without access to the password updating service and
the forgot password service, we are not able to see what
the hard-coded key and IV are used to decrypt

These may be disabled on the server end, so even if a
request comes in, it can be denied and the portion of
code cannot be exercised

We did not want to use automated UI testing since we
do not want to make undesired changes to the Carrier
account we were testing

Case Study of Popular Finance Application

On the application’s website, they claim that
your data is safe even if you lose your phone

® This is not true assuming you can bypass the screen
lock

= Can be done with if USB debugging is enabled

= You can delete the pattern file programmatically

All data stored using shared preferences

= PIN, Login token, Redacted account number, etc.

Case Study of Popular Finance Application

All data in the encrypted database

m Transactions
m Account details

m Credit Card number (in a certain scenario)

Created repackaged Redacted Android
application that will look the same as the
normal Redacted application but leak bank
credentials

= Trojan Apps are the most common vector of attack

m Protecting the Application is the responsibility of the
developer

Case Study of Popular Finance Application

= We accessed the
encrypted database and

made some changes using

: Accoums T

...-$1,000,000,000 the SQLCipher APT
. B - We modified the balance

Toony] | column in the account

. .:$1,000,000,000] table

ALERTS B - We mOdlfled the expense
- column the in spending
%-lﬁﬁroduc:ng Mint Advice | table

- INVESTMENTS

g
;

Case Study of Popular Finance Application

Shared preferences is a mechanism to store
persistent private data on a per-application
basis

m Finance app encrypts the key-value pairs upon
insertion and decrypts them upon retrieval

= Finance app also encodes the key values so they
appear as a random double value (LE.,
25581291.80006)

m Generally, keys appeared not to be stored but
generated at runtime when needed

Case Study of Popular Finance Application

Below are the contents of the shared preferences file for

Finance app. Contains encrypted key-value pairs

<?xml version='1l.0' encoding="'utf-8' standalon

Smap®

<boolean name="progress" value="false"

<string name="odkbnBf6FPHgv3jDZhdAq7iw==">1+z06N]20et+2Q0yCUSEBI6w==</s5tring?>
<string name="UwpmMnTEMwN3IYUBnhADSOI A=="

LaPO=</string>

<string nam - : 5 z *JFDX+I5pBWABFO1KYE+BEA==</string>
<string name="6Job4EH6sFUUrvOPHClacQ==">u6ztZidAIgSISEELTwvMQuw==</string>

~

<string name="leboO+6gqLIY1ly7iQ08ISCg==">u0+sEEZqPuUPuytS11J9yla==</string>
<string name="e3oeiasyMIMgSaMsYLKHOw==">0+Yw21Y¥COBCEzGQ7KOrbAA==</string>
<string nam xrxpNHhObsQPsNKyYQzxFw==">*BIinwSZApnvPkGK1Ljomow==</string>
tstring name="Bwoq4A64fOHDINFOZES1rw==">R7VATMISrRENNTh7RAYelA==2/string>
<string name="5YyNX3ZNwyntaDdLDEzdug==">k+GoFrD47plyuYPEteqghobi==</s5tring>
<string name="SZSod4uwZgg/EGHYim3nnDeA==">kyvcBgD+tMTEheb6l tDullguw==</string>
<string name="X/yEZHTUSNJGKxqRHibkqw==">Ni Iulv4X2R/qo2qmnKF8iDA==</string>
2string name="TLdyJGKjVkrQc7D706I8yw==">Ew@Ey20jHEYNmmZV2XdeLS53SWedX63CLt1vi 56
Fxm¥mevnKemwwikdmBIvICgdENZICvHOBZGIZGgV1E47eRrey It/ +ZCmIn+ZaZlVTFE8=</string=>
<string name="n8TabSAPIsDPiSC+MgVRkw==">MDWopa2¥dM1l/ WsSQT/04aDg==</string>
<string name="qOQLLeahzLwFrhpj trkjky¥Q==">npHnmJD48TTApMRezblpHs1/GKkWcAYXnFcASKrP1
03d0ZsKjdcwNLVuvePYHsLKD/ IZ14CbCdm3S5qvnz7bVWmUJLkyNz7pd4NQOQFPDbpEy X/ aovxkDagQpti Y
JTONTW9)4dOHTZqMun¥nduoYSghqt7ja==</string>

<string name="/hledaNktd4bI2svebQdStg==">2M09p/0M1lpjOpoDUZagHvEA==</5Ttring?>

null name="statusBarText"

<string name="A8/1zuEDSYNGGQY96XesKa==">t1XJV1XNT3P7Yq8a7k0edspgEhrXe9HiTatotxn
1/¥0=</string>

</map>

Case Study of Popular Finance Application

The key for the each device will always be the same

The format of the key, in general, is the first 32 bytes of
the String below

m First 8 bytes of device id + “:” + android.os.Build.
DEVICE + “:” next 7 bytes of device id + “:” +
android.os.Build. MANUFACTURER + “:” +
android.os.Build. MODEL + “@# $# @%# % # @% $@"”

On test phone before truncation: 9a1588bf:bravo:
3b1d8ftbHTC:HTC Desire@# $# @%# % # @% $@"

Case Study of Popular Finance Application

On our test phone the 32-byte key was the following
® 9a1588bf:bravo:3b1d8tbHTC:HTC De

Mimicking the application code, we generated a Java
decryption routine to decrypt the key-value pairs in the
shared preferences file

private static String [Decrypt(String toDecrypt) throws Exception {
Cipher cipher = Cipher.getlnstance("AES");
byte[] keyBytes = "9al588bf:bravo:3b1d&8fbHTC:HTC De".getBytes();
SecretKeySpec sks = new SecretKeySpec(keyBytes, "AES");
cipher.init(Cipher.DECRYPT_MODE, sks);
return new String(cipher.doFinal(Baseb4.decodeBaseb4(toDecrypt)));

Case Study of Popular Finance Application

Using the decryption routine from the previous slide, we
decrypted the entries in the shared preferences file and
decoded the key values of the key-value pairs

107955989.43234 (token) - qjQsQv849IudGlIsigD
67600920.12018 (passcode) — 9879
100066628.21724 (user id) — 65250291
115738811.1195 (guid) — 24B2C3F6FDAAFEIC
25581291.80006 (current version) — 1.5
8538329.56202 (last update date) — 1369626642534
214786401.18067 (RateMyApp Config) — 3;;1;;3;,7
166605410.64793 (pod cookie) —

n.n nn n.mn

{"domain":"mobile.redacted.com”,"name":"redactedPN","path":"/","value":
9"}

Case Study of Popular Finance Application

The finance app maintains an encrypted
database that contains finance account
information, bank account information, and
account transactions

rootlandrord: /data/datalcon, /databases & 15 -al

fUer==r=- app /4 app /4 bools 20L3-03-2b 23000 encrypted, b

- The database does not store bank credentials but has
a column that could be used to do so

Table: fi_login — Column: blobCredentials

Case Study of Popular Finance Application

Intermediate key has the format of the device ID +

creation date + hard-coded literal String
9a1588bf3b1d8tb1369622564342!%$ C++]

Device 1D -
android.provider.Settings.Secure.getString(this.getContentResolver()

 "android_id”); — 9a1588bf3b1d8fb

Creation date — can be obtained from the timestamp

Hard-coded String — in finance app’s String table with
a name of do_not_mess_with me - !%$ _C++]

Case Study of Popular Finance Application

The first 32 bytes of the String are used as an AES key
to encrypt the String !%$_C++] and the result will be
the key that is input into the SQLCipher API

private static String getDBKey(String intermediate) throws Exception {
byte[] input = null;
if (intermediate.length() > 32) {
byte[] intermediateBytes = intermediate.getBytes();
input = new byte[32];
System.arraycopy(intermediateBytes, @, input, 9, 32);
}
else if (intermediate.length() < 32) {
return "fail - needs to be at least 32 bytes in length";

}
else {

input = intermediate.getBytes();
}

SecretKeySpec sks = new SecretKeySpec(input, "AES");
Cipher cip = Cipher.getlInstance("AES");
cip.init(Cipher.ENCRYPT_MODE, sks);

byte[] toEncrypt = "!1%%_C4+]1".getBytes("UTF-8");

byte[] ciphertext = cip.doFinal(toEncrypt);

byte[] basebd4encoded =~ Basebd.encodeBaseb4(ciphertext);
return new String(baseb4encoded, "UTF-8");

Case Study of Popular Finance Application

Utilize SQLCipher API as finance app does to access DB

private Object[] getAllTables() {
SQLiteDatabase. loadlibs(this);
ArrayList<String> tables = new ArraylList<String>(}g
File encdatabasefFile = getDatabasePath("encrypted-db");
SQLiteDatabase encdatabase = SQLiteDatabase.openOrlreateDatabase(encdatabasefFile, keyVal, null);
Cursor c = encdatabase.rawQuery("select name from sqlite_master where type = 'table'", new String[@]);
String whole = "";
if (c.moveToFirst()) {
do {
whole = c.getString(@);
tables.add(whole);
} while (c.moveToNext());

}

encdatabase.close();
Object[] star = tables.toArray();
return star;

Enumerate table names and query them individually
= SELECT * FROM [TABLE_NAME];

Table names and schemas also available in the file
named db-init.sql in the finance app’s assests folder

Case Study of Popular Finance Application

The database has a few interesting tables

« account — bank account info (balance, id, etc.)

« transaction_bankcc — contains transaction data

- fi_login — some login data (although placeholder
appears to be present in db for bank credentials,
value is always null for blobCredentials)

CREATE TABLE “fi_login" (‘id" bigint(15) NOT NULL PRIMARY KEY ON
CONFLICT REPLACE, status” int(10) NOT NULL, ‘lastUpdateDate” datetime,
“fiName" varchar(255), “lastUpdated” varchar(255), “financeStatus" int(10),
“errorMessage” varchar(255), “‘phone” varchar(32), ‘logo” varchar(128), “url’
varchar(255),"csMessage" varchar(255), csMessageLink™ varchar(255),
‘provideCredentials® int(1), ‘blobCredentials’ varchar, ‘isManual’ int(1));

Case Study of Popular Finance Application

Another method exists to examine the contents
of the database

o Issue a few commands using ADB (Android Debugging Bridge)

« /yourPath/android-sdk-mac_x86/ platform-tools/adb shell
setprop log.tag.SQLiteStatements VERBOSE

« Does not require application instrumentation

« Possibly requires PIN (if enabled) but does not require using
SQLCipher API

« Data from the local database can be observed when it is synced
with the finance app’s servers

Case Study of Popular Finance Application

The last 4 digits of a credit card account number
can be seen in the network traffic of an
instrumented app

Transactions using a credit card generally do
not reveal the credit card account number

We did notice one occurrence of the full credit
card number in the encrypted database

m Worst case scenario — A finance app user
loses their cell phone and has their credit
card number exposed

Case Study of Popular Finance Application

Mobile Software Developers make mistakes...

m Collect and/ or Store PII information without
notifying the End- User

m Transmit PII information to their website or third
parties

= Enable other programs to get access to PII data

Good Intentions but non-disclosed to the End-
User

® The application makes use of resources not disclosed
to the user: Camera, GPS Location, Microphone,
Read of PII (contacts, phone #s, IMEI, etc.)

m Perform Functionality without explicit End-User
permission

Conclusion

Give your application the appropriate
permission set

Do not use hard-coded keys in an application

Do not use keys that are predictable and easy to
generate

Obfuscate your application to make reverse
engineering it more difficult (e.g., ProGuard)

Use explicit intents and do not export
application components unless necessary

Remove sensitive logging from production app

= Do not rely on android.util.Log.isLoggable(String,
int)
Be aware of application repackaging

Questions

Thank youl!

‘

Questions?

