
Multithreading and Java Native
Interface (JNI)!

Rahul Murmuria, Prof. Angelos Stavrou!
rmurmuri@gmu.edu, astavrou@gmu.edu!

!
!

SERE 2013!
Secure Android Programming: Best Practices for Data

Safety & Reliability!

Multi-core processors in Android devices!
p Natural Progression: "

Servers -> Workstations -> Laptops -> Phones!

p Multiple serial tasks can run in parallel"

For example: Each core can handle different tasks

while rendering browser pages:!
n Execute JavaScript !
n Process network connections!
n Manage protocol stack or control services!

You get concurrency for free!!

Multi-core processors in Android devices!
Cost of multi-threading:!

p Does multi-threading always bring bugs?!
n Threading should not be an after-thought!

p Are multi-threaded applications always power-

inefficient?!
n Well-designed multi-threaded program gives flexibility

to the operating system in managing energy better!

Retrofitting concurrency is a bad idea.!

Multi-threading on Android!
p Normal Java threading and synchronization

support is available to the App developer!

p Additionally Android SDK provides additional

API support for threading for both Java

applications and C/C++ native code!

So what’s different on Android, compared

to traditional software?!

Use-case determines choice of API!
p Responsiveness in the UI!

n Example: Performing a network operation in

background, leaving the UI thread for I/O!

p Speed and efficiency of long-running operations!
n Example: Decoding multiple image files to show in

tiled-view on a scrollable screen !

We discuss two main scenarios.!

Use-case determines choice of API!
p Responsiveness in the UI!

n Example: Performing a network operation in

background, leaving the UI thread for I/O!

p Speed and efficiency of long-running operations!
n Example: Decoding multiple image files to show in

tiled-view on a scrollable screen !

We discuss two main scenarios; UI first.!

Badly written Android Application!
public class MainActivity extends Activity {!

!private TextView view;!
!…!
!protected void onCreate(…) {!
! !super.onCreate(…);!
! !setContentView(… activity_main);!
! !…!
! !try { Thread.sleep(10000); }!
! !catch (…) { printStack(); }!
! !…!
! !view.setText(“how are you”);!
! !Log.v(MyAppName, “oncreate completed”);!
!}!

What’s wrong with this code?!

Removing the burden from UI Thread!

public class MainActivity extends Activity {!
!ViewSetterClass task;!
!String mytext = “how are you”;!
!…!
!protected void onCreate(…) {!
! !super.onCreate(…);!
! !setContentView(… activity_main);!
! !…!
! !task = new ViewSetterClass(view);!
! !task.execute(mytext);!
!}!

Continued…!

Removing the burden from UI Thread!
class ViewSetterClass extends AsyncTask<String, Void, String> {!

!private TextView view;!
!…!
!protected String doInBackground(String… params) {!
! !// params come from the execute() call in previous slide!
! !try { Thread.sleep(10000); }!
! !catch (…) { printStack(); }!
! !return params[0];!
!}!
!protected String onPostExecute(String mytext) {!
! !view.setText(mytext);!
! !Log.v(MyAppName, “oncreate completed”);!
!}!

}!
UI Thread does not sleep during the 10 seconds.!

Memory Analysis of a production code!
p We will analyze “Image Downloader”

Application from Android Developer’s Blog!
n http://android-developers.blogspot.com/2010/07/

multithreading-for-performance.html!

p Memory Analysis can be used to find out !
n Memory leaks!

n Duplicate Strings, Weak references, etc. !

Why should we care about memory analysis?!

Memory Structure in Android!
p Lot of shared memory between processes!

n Physical RAM is mapped to multiple processes!

n Physical memory usage is not as relevant as the scaled

reading based on ratio of number of processes accessing

a given page in memory (Pss value)!

p Some memory analysis tools:!
n adb shell dumpsys meminfo <process-name>!

n adb shell procrank!

n Eclipse Memory Analyser !

Demo of memory analysis!

p Let’s try analysis a few applications using the

memory analysis tools described in previous

slide.!

Threading data-intensive operations!
p Multiple threads in an Android app using a thread

pool object!

n You can also communicate between the threads!

p Create a pool of threads:!

!

External Link to Sample Application!

!

p For ThreadPool Google has a sample application

at their developer website:!
n https://developer.android.com/training/multiple-

threads/index.html!

!

Motivation for Native Code!
p Access Low-level OS features – ioctl, poll, etc.!

p Explore advanced CPU features – NEON
instruction set for signal and video processing!

p Reuse large or legacy C/C++ programs!

p Improve performance of computationally
intensive operations!

p OpenGL!

p OpenSL ES!

Multiple Ways to Program Native!
p Using Java Application to present a UI to the

user, and perform parts of logic in native code!
n Interfacing between Java and C is done using : Java

Native Interface (JNI)!

p Create purely native Activity with UI designed
using OpenGL!
n Not common practice!

p Android has a C Library called Bionic, custom
built for use on mobile phones. !

We focus on the first method using JNI!

JNI Example – Step by Step!

p Make new application called!
n Project: HelloJni!
n Package: edu.gmu.HelloJni!
n Activity Name: HelloJni!

p The Java sources are under folder “HelloJni/src”!
p Make new subdirectory in project folder called “jni”!

n i.e., HelloJni/jni!
p In jni directory make new file called !

n MyHelloJni.cpp!
!
!

JNI Example (p2)!
p In this file, MyHelloJni.cpp, put!

#include <string.h>
#include <jni.h>
extern "C" {

 JNIEXPORT jstring JNICALL
 Java_edu_gmu_HelloJni_HelloJniActivity_stringFromJNI
 (JNIEnv* env, jobject thiz)
 {
 return env->NewStringUTF("Hello from JNI!");
 }

}

!
p  Important: There is a logic to that complicated function name,

and it is required to follow the convention.!

!
!

JNI Example (p3)!
!

p In HelloJni/jni make new file called Android.mk!
p Put the following in Android.mk!
!

LOCAL_PATH	
 :=	
 $(call	
 my-­‐dir)	

include	
 $(CLEAR_VARS)	

LOCAL_MODULE	
 	
 	
 	
 :=	
 HelloJni	

LOCAL_SRC_FILES	
 :=	
 MyHelloJni.cpp	

include	
 $(BUILD_SHARED_LIBRARY)	

p Note that LOCAL_MODULE defines the module name!

JNI Example (p4)!
!

p Build library!
n Open terminal. !
n “cd” to <workspace>/HelloJni/jni!
n Run build!

p <android-ndk-r7b>/ndk-build!
n Check that libHelloJni.so is created!

Java code compiles using the Android SDK "

Native code compiles using the Android NDK!

On startup – Working of JNI!

p The JNI library is loaded when
System.loadLibrary() is called.!

p Every function in the native C code maps to a
function declaration on the Java side. !
n The declarations are defined as “native”!

n public native int getNextFrame(parameters);!

Demo! : Let’s look at some samples in code!
Ref: http://developer.att.com/developer/forward.jsp?

passedItemId=11900170!

Security implications of C code!

p Java Virtual Machine (JVM) does a lot of work to
make the Java code secure:!
n Protects against buffer overruns, and stack smashing

attacks!

n It performs bounds checking on all arrays!

p Jni code is a blackbox to the JVM!
n Native code also runs with same privileges as the Java

code that spawned it, however, sandboxing is weaker!

Other tips for Reliable Development!

p If using pthreads in C for native threads, remember to
detach each of the threads before exiting!

p All arguments passed to and from the native code are
local references to the JNI functions!
n There is API to define global references explicitly!

p Make use of onPause/onResume to save or close
resources that are not needed in the background!
n Specially useful if you have multiple threads, or content

listeners which are not for other applications to use!

Thank you!!

Extra Slides!

Tutorial Links!

p JNI: http://marakana.com/s/post/1292/

jni_reference_example!

!

p Multithreading: http://developer.android.com/

training/multiple-threads/index.html!

In java HelloJni!
p  After public class HelloJniActivity extends Activity {!

n  public native String stringFromJNI(); // the c++ function name!
n  static {!
n  System.loadLibrary("HelloJni"); // shared lib is called

libHelloJni.so. !
p  // this name is from the LOCAL_MODULE part of the Android.mk file!

n  }!
p  In onCreate, after setContentView(R.layout.main); put!

n  Log.e("debug","calling jni");!
n  Log.e("debug",stringFromJNI()); // last part of name of c++ function!
n  Log.e("Debug","done"); !

p  Run and check log!
p  Note: public native … allows any function to be defined. But

when this function is called, the shared library must have
already been loaded (via System.loadLibrary)!

